Part II: Mathematica
![]() |
Construction on Mathematica |
Q.No.1: Plot
the parabola
from –3 to 3.
Construction
Steps:
1.
Use Plot command for plotting the parabola
.
2.
Give the range for x, e.g. {x -3, 3}.
3.
Use command PlotStyle to show the color of
the graph. e.g. PlotStyle
Red.
4.
To show the name of the graph, use the
command PlotLegends. e. g. PlotLegends
5.
For example:
Plot[
, {x, -3, 3}, PlotStyle
{Red}, PlotLegends
{
}]
[Note:
Use the command Shift + Enter for the result]
Q.No.2: Plot
the parabola
and
from –3 to 3.
Construction
Steps:
1.
Input the two functions
and
2.
Use Plot command for plotting the two
parabolas' f(x) and g(x).
3.
Give the range for the x i. e. {x, -3, 3}.
4.
Use command PlotStyle to show the color of
the graph. e. g.
.
For
example.
f(x_)
: =
g(x_)
: = 9-
Plot
[{f[x], g[x], {x, -3, 3},
]
Q.No.3: Plot
a function
whose axes origin is (1, 6).
Construction
Steps:
1.
Use plot the command for plotting the
function
.
2.
Give the range for x, i. e. {x, 1, 2}.
3.
Use the AxesOrigin
{1, 6}. To change the origin of axes.
4.
For example:
Plot
[
, {x, 1, 2}, AxesOrigin
{1, 6}]
Q.No.4: Plot
the graph of
from x = 0 to x = 5.
Construction
Steps:
1.
Use the Plot command for plotting the
function
2.
Use palettes and go to Basic Math
Assistant for the exponential function [
].
3.
Give the range for x. from 0 to 5.
For
example:
Plot[
-x, {x, 0, 5}]
Q.No.5: Plot the graph of
on the
interval [-3, 3].
Construction
Steps:
1.
Use the Plot command for plotting the
function y = Abs[1-Abs[x]].
2.
Give the range for x, -3 to 3.
For
example:
Plot[Abs[1-Abs[x]],
{x, -3, 3}.
Q.No.6: Plot the graph of standard normal
curve form x = -3, to x = 3.
Construction
Steps:
1.
Use the Plot command for plotting the
function for standard normal curve eq.
2.
Use Palettes and go to Basic Math
assistant for standard normal equation.
3.
Give the range for x. -3 to 3.
For example:
Plot[
Q.No.7: Plot the graph of
,
-
and
Sin[10x] on the interval [-2 Pi, 2 Pi].
Construction
Steps:
1.
Use the Plot command for three functions.
, -
and Sin[10 x].
2.
Give the range for x. i. e. {
}.
Example:
Plot[{
, -
2, Sin[10 x]}, {
}].
Q.No.8: Plot a function
ranged from
(-3, 3) in 3D.
Construction
Steps:
1.
Use 3D Plot command for plotting the graph
Note:
This function is associated with three variable so, we need 3D Plot command.
2.
Give the different range for x and y. i.e.
{x, -3, 3} and {y, -3, 3}.
Example:
Plot3D
[Sin [x-y], {x, -3, 3}, {y, -3, 3}]
Q.No.9: Plot a parametric curve
the value
of t ranged from (0 to 13) in 3D.
Construction
Steps:
1.
Since, t is a parameter. Use parametric
Plot 3D for plotting the function (Sin (t), Cos (t), t/3).
Note:
This function is associated with three co-ordinates so, use the 3D plot
command.
2.
Give the range for t. i.e. {t, 0, 13}.
Example:
ParametricPlot3D
[{Sin[t], Cos[t], t/3}, {t, 0, 13}]
Q.No.10: Sketch the surface of revolution generated
when the curve
from x=, 0 to x = 4, is rotated about the
z-axis.
Construction
Steps:
For,
plotting generating function.
1.
Use plot command for the function
.
2.
Give the range for x. i.e. { x, 0, 4}.
3.
Use AspectRatio
1.
Note:
We use AspectRatio for ratio between height and wide.
4.
Use the AxesLabel command to show the axes
name. i. e. AxesLabel
{"x",
"z"}
For,
Plotting Revolution function 3D.
1.
Use the RevolutionPlot3D command for
generating the revolution solid. i.e.
.
2.
Give the range for x. i.e. {x, 0, 4}
3.
Use the command BoxRatio
1.
4.
Use the command ViewPoint
{1, -5, 1}.
5.
Use the command AxesLabel
{"x", "y",
"z"}. To show the name of axes.
Example:
Plot[√x,
{x, 0, 4}, AspectRatio
1, AxeLable
{"x", "z"}]
RevolutionPlot3D[√x,
{x, 0, 4}, BoxRatios
1, ViewPoint
{1, -5, 1}, AxesLabel
{"x", "y",
"z"}]
Q.No.11: Use
Manipulate to control the graph of
, 0 ≤ x < 2 Ï€, with controls for a, b, and c
varying between 1 and 10. Move the sliders and observe the affect upon the
graph.
Construction
Steps:
1.
Use the Manipulate command to control the,
b, c.
2.
Use Plot command under manipulation for
the plotting function f(x) = a Sin (b x+ c).
3.
Give the range x. i.e. {x, 0, 2
}
4.
Give the range of manipulation for the a,
b and c. i.e. {a, 1, 10}, {b, 1, 10} and {c, 1, 10}
Example:
Manipulate[Plot[a
Sin[b x+ c], {x, 0, 2
}], {a, 1, 10}, {b, 1, 10}, {c, 1, 10}]
Q.No.12: Show
that the function
satisfies Rolle's Theorem on the interval [0,
1] and find the value of c referred to in the theorem.
Construction
Steps:
1.
Input the function f[x_] = (
+2
+15x +2)Sin[Ï€ x] Check the value for the initial
point of the interval. i. e. f [0] and final point of the interval. i. e. f
[1].
2.
Check, whether f[0] = f[1].
3.
Give the command FindRoot for f'[c] = = 0.
Where, C ÃŽ (0, 1).
4.
Note: We use double equal to sign (= =)
for the command finding the root.
5.
It gives the value of c.
6.
Use the plot command for plotting the
function f[x] and f [0.640241]. To show the Rolle's theorem.
7.
Give the range for x. i.e. {x, 0, 1}.
Example:
f[x_]
= (
+2
+15x +2)Sin[Ï€ x] Press Shift+ Enter.
f[0]
Press Shift+ Enter.
f[1]
Press Shift+ Enter.
FindRoot[f'[c]
= = 0, {x, 0, 1} ] Press Shift+ Enter
Plot[{f[x],
f[0.640241]}, {x, 0, 1}].
Q.No.13:
Sketch the graph of f
and its derivative, on the set of axes, for
-10<x<10.
Construction
Steps:
1.
Input ;
press Shift+ Enter
2.
Give the range of x i.e. {x, -10, 10},
3.
Decorate the plot by using
Example:
Use Manipulate to show that the
tangent line at various points of the curve
for 0<x<2pi.
Construction
Steps:
1.
Input ;
press Shift+ Enter
2.
Give the input t[x_, u_] := f[u] + f'[u]
(x - u) /; u - 0.5 < x < u + 0.5 for a the tangent at a point u
3.
Use the command manipulate for
manipulation of tangent
4.
Use plot command to plot graph and its
tangent
5.
Give the range of x i.e. {x, 0, 6},
6.
Decorate the plot by using PlotStyle and
Graphic command
Example
:
Manipulate[Show[Plot[{f[x],
t[x, u]}, {x, 0, 6}, PlotStyle → {Red, {Green,
Thickness[0.01]}}],Graphics[{PointSize[0.02], Point[{u, f[u]}]}]], {u, 0, 6}]
Q.No.14: Area
enclosed by two curve.
Construction
Steps:
1. In
put the function f[x_] = 1-
and g[x_] =
-3
2. Use
Plot the command for plotting the function f[x] and g[x].
3. Give
the range for x. i.e. {x, -2, 2}.
4. Use
the PlotStyle Command for coloring curve line. i. e. PlotStyle
{Red,
Blue}.
5. Use
the Filling command for filling the intersection of two curves. i.e. Filling
{1
{{2},
{None, Yellow}}}
Example:
f[x_]= 1-
Press Shift+
Enter
g[x_] =
-3
Press Shift + Enter
Plot[{f[x], g[x]},
{x, -2, 2}, PlotStyle
{Red,
Blue}, Filling{1
{{2}, {None, Yellow}}}] Press Shift + Enter.
For Area of
enclosed by two curve i.e. Yellow area.
1.
Input
point=Solve[f[x]= =g[x]] Press Shift + Enter.
2.
Input {a, b, c,
d}=x/.point [Press Shift+ Enter]
3.
Use palettes and
go to basic math assistant and input the symbol
//N [Press Shift + Enter]
Q.No.15:
Binomial Probability Distribution Template.
Construction
Steps:
1.
Define the binomial parameters n, p, q for
example: n = 2; p = 0.5; q = 1 - p;
2.
Define
=
ProbabilityDistribution[Binomial[n, x] p^x q^(n - x), {x, 0, n, 1}] then,
Shift+ Enter
3.
Give the input PDF[
, x] Press Shift+ Enter
4.
Give the input Mean[
] for finding mean of the distribution
5.
Give the input Variance[
] for finding variance of the distribution
6.
Write a command TableForm[{Table[PDF[
, x], {x, 0, n, 1}]}, TableHeadings
→{{"f(x)"}, Table[x, {x, 0, n, 1}]}] to show distribution in table
form.
7.
Give
DiscretePlot[PDF[
, x], {x, -1, n + 1}, PlotStyle →Black,
FillingStyle→Directive[Opacity[1], Red],AxesOrigin → {-1, 0}, ExtentSize → 0.2,
AxesLabel → {"Value of X", "Probability f(x)"}] command for
ploting the graph of the probability distribution.
Q.No.16: Plot
the straight line
in Mathematica using Contour plot. Show Axis
and AxesLable. Take the range from - 2 to 2.
Construction
Steps:
1.
Use ContourPlot command for the Polting
the Straightline 2x+3y == 1.
Note:
Use = = instead of = for ContourPlot command.
2.
Give the range of x and y i.e. {x , -2, 2},
{y,-2, 2}.
3.
Use Axes
True to show Axes and AxesLabel
{"X","Y"} to give the
name of the Axes.
Example:
ContourPlot[2
x + 3 y == 1, {x, -2, 2}, {y, -2, 2},Axes
True, AxesLabel
{X
- Axis, Y - Axis}]
Q.No.17: Solve and Plot two linear equation x+ y=7
and x-y=1 in Mathematica using solve and contourplot command. Show Axis and
intersection point. Take the range from -6 to 6.
Construction
Steps:
1.
Give the input for solving Solve[ x + y ==
7 && x - y == 1, {x, y}].
2.
Use the show command to show the
CountourPlot {x + y == 7, x - y == 1}.
3.
Give the range of x and y i.e. {x, -6, 6},
{y, - 6, 6}.
4.
Use Axes
True
and AxesLabel
{"X","Y"} to show and name
for the Axes.
5.
Use AxesStyle
Directive[Orange, 12] for coluring and Width of the Axes.
6.
Use Graphics [{PointSize[0.03], Point[{4,
3}]}] for point size and intersection point.
Example:
Solve[
x + y == 7 && x - y == 1, {x, y}] press Shift + enter.
Show[ContourPlot[{x
+ y == 7, x - y == 1}, {x, -6, 6}, {y, -6, 6}, Axes
True,
AxesLabel
{X
- Axis, Y - Axis}, AxesStyle
Directive[Orange, 12]],
Graphics[{PointSize[0.03],
Point[{4, 3}]}]].
Q.No.18: Plot the hyperboloid
using
Contourplot3D. Take the range of plot from -2 to 2. ShowAxesLable and
PlotLabel.
Construction
Steps:
1.
Use the ContourPlot3D command for Plotting
hyperboloid
.
2.
[Note: This equation is related with three
variables so we use 3D Plot
3.
Use = = instead of = for ContourPlot.]
4.
Give the range of x, y and z. i.e, {x, -2,
2}, {y, -2, 2}, {z, -2, 2}.
5.
Give the command AxesLabel l
{x,y,z}
to Labled the Axes.
6.
Give the command PlotLabel l
x^2 + y ^ 2 - z^ 2 == 1 to name the graph.
Example:
ContourPlot3D[
, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
AxesLabel
l
{x, y, z}, PlotLabel l
].
Q.No.19: Plot a helix
using ParametricPlot3D. And Manipulate the parameter a from 1 to 5.
Construction
Steps:
1.
Since this function is determined by
parameter, u and having 3 co-ordinates show we use parametricPlot3D.
2.
Use Manipulate command for manipulating a.
3.
Use ParametricPlot3D for [{a Sin[u], a
Cos[u], u / 10}, {u, 0, 20}].
4.
Give the manipulation rang for a i. e {a, 1,
5}.
Example:
Manipulate[ParametricPlot3D[{a
Sin[u], a Cos[u], u / 10}, {u, 0, 20}], {a, 1, 5}]
Q.No.20: Surface plot
Construction
Steps:
1.
Use the command ParametricPlot3D[{u + v, u
- v, u^2 + v^2}].
2.
Give the range for u and v i. e {u,-3, 3},{v,-3,
3}.
3.
Use the PlotStyle
Yellow command for coloring the surface.
4.
Use the AxesLabel
{X, Y, Z} to name the Axes.
5.
Use the command ImageSize
Large for enlarging the surface.
Example:
ParametricPlot3D[{u
+ v, u - v, u^2 + v^2}, {u, -3, 3},{v, -3, 3}, BoxRatios
{1,
1, 1}, PlotStyle
Yellow, AxesLabel
{X
- Axis, Y - Axis, Z - Axis}, ImageSize
Large].
Q.No.21: Sphere plot
Construction
Steps:
1.
Use the ParametricPlot3D[{Sin[u] Cos[v],
Sin[u] Sin[v], Cos[u]}]
2.
Give the range for u and v i. e {u, 0, Pi},
{v,-Pi, Pi + 3 Pi / 4}.
3.
Use the PlotStyle
Opacity[0.5]
Example:
ParametricPlot3D[{Sin[u]
Cos[v], Sin[u] Sin[v], Cos[u]},{u, 0, Pi}, {v, -Pi, Pi + 3 Pi / 4}, PlotStyle
Opacity[0.5]].
Q.No.22:
Cylinder plot.
Construction
Steps:
1.
Use the ContourPlot3D[(x - 1)^2 + y^2 ==
1].
2.
Give the range for x, y and z i. e,
{x,-2,2},{y,-2, 2},{z,-2, 2}.
3.
Use AxesLabel
{X, Y, Z} for name the axes for naming for
the Axes.
4.
Use PlotRnge
Full for complet appear of cylinder inside
the axes.
Example:
ContourPlot3D[(x
- 1)^2 + y^2 == 1, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},BoxRatios
{1,
1, 1}, AxesLabel
{X
- Axis, Y - Axis, Z - Axis}, PlotRange
Full].
Q.No.23: Tangent Plane plot
Construction
Steps:
1.
Use Manipulate command to Manipulate to
Tangent Plane.
2.
Use ParametricPlot3D[{u + v, u - v, u^2 +
v^2}] under Show command.
3.
Give BoxRatios, PlotStyle, AxesLabel,
ImageSize as you’re interested.
For
example:
BoxRatios
{1, 1, 1},PlotStyle
Yellow, AxesLabel
{X
-Axis, Y-Axis, Z-Axis}, ImageSize
Large.
Use Graphics3D command
for decorating the tangent Plane.
Example:
Manipulate[Show[ParametricPlot3D[{u
+ v, u - v, u^2 + v^2},{u, -3, 3}, {v, -3, 3}, BoxRatios
{1, 1, 1}, PlotStyle
Yellow,AxesLabel
{X - Axis, Y - Axis, Z - Axis}, ImageSize
Large],Graphics3D[{Red, PointSize[0.02],
Point[{u + v, u - v, u^2 + v^2}]} /. {u
p, v
q}],Graphics3D[Arrow[{{u
+ v, u - v, u2 + v2}, {1 + u + v, 1 + u - v, 2 u + u2
+ v2}} /.{u
p, v
q}]], Graphics3D[Arrow[{{u + v, u - v, u2
+ v2}, {1 + u + v, -1 + u - v, u2 + 2 v + v2}}/.
{u
p, v ¦ q}]], ParametricPlot3D[({u + v, u - v, u^2 + v^2} +
a {1, 1, 2 u} + b {1, -1, 2 v}) /.{u
p, v
q}, {a, -2, 2}, {b, -2, 2}, PlotStyle
Blue]], {p, -3, 3}, {q, -3, 3}].
Q.No.24: Surface plot
Construction
Steps:
1.
Use ParametericPlot3D command for Ploting
{4 + (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u], 4 + Sin[v]} and {8 + (3 +
Cos[v]) Cos[u], 3 + Sin[v], 4 + (3 + Cos[v]) Sin[u]}.
2.
Give the range for u and v i. e, {u,0, 2
Pi},{v,0, 2 Pi}.
3.
Use PlotStyle
{Red,Green} to Show the different colure
of the given Surface.
Example:
ParametricPlot3D[{{4
+ (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u], 4 + Sin[v]}, {8 + (3 + Cos[v])
Cos[u], 3 + Sin[v], 4 + (3 + Cos[v]) Sin[u]}}, {u, 0, 2 Pi}, {v, 0, 2 Pi},
PlotStyle
{Red, Green}]
Q.No.25: Continuous Probability Distribution
Template
Construction
Steps:
1.
Give the input 'a' =1; b=4
Note:
Where 'a' means initial value of the distribution and 'b' means final value of
the distribution.
2.
Enter the function , f[x] = x^2 / 21
3.
Input
=
ProbabilityDistribution[x^2 / 21, {x, a, b}];
4.
Input PDF[
, x] then Shift+ Enter
5. Check
total probability by using input
Then, you will get 1 as a result.
1. Give
the input mean; Mean [
] // N for finding the mean of the
distribution.
2. Give
the input the Variance Variance[
] // N for finding the variance of the
distribution.
3. For
finding the Probability within the certain interval firstly Enter the range
e.g. c=2; d=4.5
4. Input
;
5. Give
the command Plot[ PDF{
, x}]
Q.No.26: Discrete Probability Distribution
Template.
Construction
Steps:
1. Give the input a=1; b=3
2. Note: Where 'a' means initial value of the
distribution and 'b' means final value of the distribution.
3. Give the input
=ProbablityDistributation[x^2/14,{x, a, b, 1}]
;
4. Input the PDF[
, x] then press Shift+ Enter.
5. Give the input Mean
for finding the mean of the distribution.
6. Give the
input Variance[
] // N for
finding the variance of the distribution.
Q.No.27: The Explicit representation of the space
curve.
Construction
Steps:
1.
Use Manipulate command to manipulate the
parametric curve
2.
Use Parametric Plot3D command for ploting
the graph [{t+1, t^3,t^2}] under the show command.
3.
Give the range of the parameter 't' i.e. {t,-2,2}
4.
Decorate the graph using the box ratio,
axis level, Graphics3D command.
Example:
Manipulate[Show[ParametricPlot3D[{t
+ 1, t^3, t^2}, {t, -2, 2}, BoxRatios →{1, 1, 1}, AxesLabel → {X - Axis, Y -
Axis, Z - Axis}], Graphics3D[{PointSize[0.03], Red, Point[{t + 1, t^3, t^2}]}
/. {t → parameter}]], {parameter, -2, 2}].
Q.No.28: The Implicit representation of the Viviani
curve.
Construction
Steps:
1.
Give input h=x^2 + y^2 + z^2 - 4 ; and g =
(x - 1)^2 + y^2 - 1;
2.
Use CounterPlot3D command to plot {h ==
0, g == 0}.
3.
Give the rang for x,y and z i.e. {x, -2,
2}, {y, -2, 2}, {z, -2, 2}
4.
Decorate the curve by using BoxRatio,
AxesLable and PlotRange command.
Example:
h
= x^2 + y^2 + z^2 - 4 ;
g
= (x - 1)^2 + y^2 - 1;
ContourPlot3D[{h==
0, g== 0}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},BoxRatios → {1, 1, 1}, AxesLabel
→{X - Axis, Y - Axis, Z - Axis}, PlotRange → Full]
Q.No.29: Unit vector along tangent to a space curve.
Construction
Steps:
1.
Inter the space curve r[t]= {t^3, t^3 + 7
t + 5 t^2, t^2} press Shift+ enter
2.
Inter r'[t] for finding the derivative of
the space curve.
3.
Then give the command tangentvector =
FullSimplify[r'[t], t ∈
Reals]
4.
Give magnitude = FullSimplify[Norm[r'[t]],
t ∈ Reals] for finding the
magnitude of the space curve.
5.
Give the command unittangentvector =
tangentvector / magnitude for finding unit tangent vector.
Q.No.30. Plot a Helix (a Sin[u], a Cos[u], u/10)
using ParametricPlot3D.And Manipulate the parameter a from 1 to 5.
Construction
Steps:
1.
Use manipulate command for manipulating
the helix.
2.
Use ParamatricPlot3D[{a u Sin[v],a u
Cos[v],u v}] command for plotting the helix
3.
Give the range for 'u' and 'v' i.e. {u, 0,
10}, {v, 0, 10}.
4.
Give the range of the manipulation for a.
i.e. {a, 1, 5}
Example:
Manipulate[ParametricPlot3D[{a
u Sin[v], a u Cos[v], u v}, {u, 0, 10}, {v, 0, 10}].
Q.No.31: Limit of the function.
Construction
Steps:
1.
Give the limit command for the function
Limit[(x^2 - 2 x - 8) / (x - 4)].
2.
Give the limit point for x. i.e. x→4
3.
Use Direction → -1 command: Limit[(x^2 - 2
x - 8) / (x - 4), x → 4, Direction →1]
Example:
Limit[(x^2
- 2 x - 8) / (x - 4), x → 4, Direction →-1]
Then,
Limit[x^a, x → ∞, Assumptions → a < 0]
Q.No.32: Limit of a function in Plot.
Construction
Steps:
1.
Use the Manipulate command for
manipulation of the given function.
2.
Use Plot Plot[{a x Sin[1 / (b x)], Abs[a
x], - Abs[a x]}] command
3.
Give the range for x. i.e. {x, -1, 1}
4.
Use PlotRange{-5, 5}
5.
Give the range of manipulation{{a, 1,
"Amplitude"}, 1, 5}, {{b, 1, "Periodicity"}, 1, 5}
Example:
Manipulate[Plot[{a x
Sin[1 / (b x)], Abs[a x], - Abs[a x]}, {x, -1, 1},PlotRange → {-5, 5}], {{a, 1,
"Amplitude"}, 1, 5}, {{b, 1, "Periodicity"}, 1, 5}]
Q.No.33: Test of Left Hand and Right hand limit.
Construction
Steps:
1.
Give command limit = Limit[Abs[x] / x, x →
0]
2.
Give the command limitright = Limit[Abs[x] /
x, x → 0, Direction → -1] for finding right hand limit
3.
Similarly, limitleft = Limit[Abs[x] / x, x
→ 0, Direction →1] for finding left hand limit.
4.
Use the limit == limitright == limitleft
command whether the limit is exist or not.
Q.No.34: Derivative of function by first principle.
Construction
Steps:
1.
Input the function f[x_] := Tan[x]
2.
Give the command; Limit[(f[x + h] - f[x])
/ h, h → 0, Analytic → True] press Shift+ Enter
3.
Example: f[x_] := Tan[x]
4.
Limit[(f[x + h] - f[x]) / h, h →0,
Analytic → True]
Q.No.35: Application of Integration.
Construction
Steps:
1.
Give the Manipulate command for
manipulation of h
2.
Use [ContourPlot[{x^2 + y^2== 16, y==h}]
under manipulation.
3.
Give the range of x and y respectively
i.e.{x, -4.1, 4.1}, {y, 0, 4.1}
4.
Use AspectRatio→Automatic command
5.
Give the range of manipulation i.e. {h, 0,
4}
Example: Manipulate[ContourPlot[{x^2 + y^2==16, y==h},
{x,
-4.1, 4.1}, {y, 0, 4.1}, AspectRatio → Automatic], {h, 0, 4}]
6.
Use the following input
Part II: Mathematica
Construction on Mathematica:
Q.No.1: Plot
the parabola
from –3 to 3.
Construction
Steps:
1.
Use Plot command for plotting the parabola
.
2.
Give the range for x, e.g. {x -3, 3}.
3.
Use command PlotStyle to show the color of
the graph. e.g. PlotStyle
Red.
4.
To show the name of the graph, use the
command PlotLegends. e. g. PlotLegends
5.
For example:
Plot[
, {x, -3, 3}, PlotStyle
{Red}, PlotLegends
{
}]
[Note:
Use the command Shift + Enter for the result]
Q.No.2: Plot
the parabola
and
from –3 to 3.
Construction
Steps:
1.
Input the two functions
and
2.
Use Plot command for plotting the two
parabolas' f(x) and g(x).
3.
Give the range for the x i. e. {x, -3, 3}.
4.
Use command PlotStyle to show the color of
the graph. e. g.
.
For
example.
f(x_)
: =
g(x_)
: = 9-
Plot
[{f[x], g[x], {x, -3, 3},
]
Q.No.3: Plot
a function
whose axes origin is (1, 6).
Construction
Steps:
1.
Use plot the command for plotting the
function
.
2.
Give the range for x, i. e. {x, 1, 2}.
3.
Use the AxesOrigin
{1, 6}. To change the origin of axes.
4.
For example:
Plot
[
, {x, 1, 2}, AxesOrigin
{1, 6}]
Q.No.4: Plot
the graph of
from x = 0 to x = 5.
Construction
Steps:
1.
Use the Plot command for plotting the
function
2.
Use palettes and go to Basic Math
Assistant for the exponential function [
].
3.
Give the range for x. from 0 to 5.
For
example:
Plot[
-x, {x, 0, 5}]
Q.No.5: Plot the graph of
on the
interval [-3, 3].
Construction
Steps:
1.
Use the Plot command for plotting the
function y = Abs[1-Abs[x]].
2.
Give the range for x, -3 to 3.
For
example:
Plot[Abs[1-Abs[x]],
{x, -3, 3}.
Q.No.6: Plot the graph of standard normal
curve form x = -3, to x = 3.
Construction
Steps:
1.
Use the Plot command for plotting the
function for standard normal curve eq.
2.
Use Palettes and go to Basic Math
assistant for standard normal equation.
3.
Give the range for x. -3 to 3.
For example:
Plot[
Q.No.7: Plot the graph of
,
-
and
Sin[10x] on the interval [-2 Pi, 2 Pi].
Construction
Steps:
1.
Use the Plot command for three functions.
, -
and Sin[10 x].
2.
Give the range for x. i. e. {
}.
Example:
Plot[{
, -
2, Sin[10 x]}, {
}].
Q.No.8: Plot a function
ranged from
(-3, 3) in 3D.
Construction
Steps:
1.
Use 3D Plot command for plotting the graph
Note:
This function is associated with three variable so, we need 3D Plot command.
2.
Give the different range for x and y. i.e.
{x, -3, 3} and {y, -3, 3}.
Example:
Plot3D
[Sin [x-y], {x, -3, 3}, {y, -3, 3}]
Q.No.9: Plot a parametric curve
the value
of t ranged from (0 to 13) in 3D.
Construction
Steps:
1.
Since, t is a parameter. Use parametric
Plot 3D for plotting the function (Sin (t), Cos (t), t/3).
Note:
This function is associated with three co-ordinates so, use the 3D plot
command.
2.
Give the range for t. i.e. {t, 0, 13}.
Example:
ParametricPlot3D
[{Sin[t], Cos[t], t/3}, {t, 0, 13}]
Q.No.10: Sketch the surface of revolution generated
when the curve
from x=, 0 to x = 4, is rotated about the
z-axis.
Construction
Steps:
For,
plotting generating function.
1.
Use plot command for the function
.
2.
Give the range for x. i.e. { x, 0, 4}.
3.
Use AspectRatio
1.
Note:
We use AspectRatio for ratio between height and wide.
4.
Use the AxesLabel command to show the axes
name. i. e. AxesLabel
{"x",
"z"}
For,
Plotting Revolution function 3D.
1.
Use the RevolutionPlot3D command for
generating the revolution solid. i.e.
.
2.
Give the range for x. i.e. {x, 0, 4}
3.
Use the command BoxRatio
1.
4.
Use the command ViewPoint
{1, -5, 1}.
5.
Use the command AxesLabel
{"x", "y",
"z"}. To show the name of axes.
Example:
Plot[√x,
{x, 0, 4}, AspectRatio
1, AxeLable
{"x", "z"}]
RevolutionPlot3D[√x,
{x, 0, 4}, BoxRatios
1, ViewPoint
{1, -5, 1}, AxesLabel
{"x", "y",
"z"}]
Q.No.11: Use
Manipulate to control the graph of
, 0 ≤ x < 2 Ï€, with controls for a, b, and c
varying between 1 and 10. Move the sliders and observe the affect upon the
graph.
Construction
Steps:
1.
Use the Manipulate command to control the,
b, c.
2.
Use Plot command under manipulation for
the plotting function f(x) = a Sin (b x+ c).
3.
Give the range x. i.e. {x, 0, 2
}
4.
Give the range of manipulation for the a,
b and c. i.e. {a, 1, 10}, {b, 1, 10} and {c, 1, 10}
Example:
Manipulate[Plot[a
Sin[b x+ c], {x, 0, 2
}], {a, 1, 10}, {b, 1, 10}, {c, 1, 10}]
Q.No.12: Show
that the function
satisfies Rolle's Theorem on the interval [0,
1] and find the value of c referred to in the theorem.
Construction
Steps:
1.
Input the function f[x_] = (
+2
+15x +2)Sin[Ï€ x] Check the value for the initial
point of the interval. i. e. f [0] and final point of the interval. i. e. f
[1].
2.
Check, whether f[0] = f[1].
3.
Give the command FindRoot for f'[c] = = 0.
Where, C ÃŽ (0, 1).
4.
Note: We use double equal to sign (= =)
for the command finding the root.
5.
It gives the value of c.
6.
Use the plot command for plotting the
function f[x] and f [0.640241]. To show the Rolle's theorem.
7.
Give the range for x. i.e. {x, 0, 1}.
Example:
f[x_]
= (
+2
+15x +2)Sin[Ï€ x] Press Shift+ Enter.
f[0]
Press Shift+ Enter.
f[1]
Press Shift+ Enter.
FindRoot[f'[c]
= = 0, {x, 0, 1} ] Press Shift+ Enter
Plot[{f[x],
f[0.640241]}, {x, 0, 1}].
Q.No.13:
Sketch the graph of f
and its derivative, on the set of axes, for
-10<x<10.
Construction
Steps:
1.
Input ;
press Shift+ Enter
2.
Give the range of x i.e. {x, -10, 10},
3.
Decorate the plot by using
Example:
Use Manipulate to show that the
tangent line at various points of the curve
for 0<x<2pi.
Construction
Steps:
1.
Input ;
press Shift+ Enter
2.
Give the input t[x_, u_] := f[u] + f'[u]
(x - u) /; u - 0.5 < x < u + 0.5 for a the tangent at a point u
3.
Use the command manipulate for
manipulation of tangent
4.
Use plot command to plot graph and its
tangent
5.
Give the range of x i.e. {x, 0, 6},
6.
Decorate the plot by using PlotStyle and
Graphic command
Example
:
Manipulate[Show[Plot[{f[x],
t[x, u]}, {x, 0, 6}, PlotStyle → {Red, {Green,
Thickness[0.01]}}],Graphics[{PointSize[0.02], Point[{u, f[u]}]}]], {u, 0, 6}]
Q.No.14: Area
enclosed by two curve.
Construction
Steps:
1. In
put the function f[x_] = 1-
and g[x_] =
-3
2. Use
Plot the command for plotting the function f[x] and g[x].
3. Give
the range for x. i.e. {x, -2, 2}.
4. Use
the PlotStyle Command for coloring curve line. i. e. PlotStyle
{Red,
Blue}.
5. Use
the Filling command for filling the intersection of two curves. i.e. Filling
{1
{{2},
{None, Yellow}}}
Example:
f[x_]= 1-
Press Shift+
Enter
g[x_] =
-3
Press Shift + Enter
Plot[{f[x], g[x]},
{x, -2, 2}, PlotStyle
{Red,
Blue}, Filling{1
{{2}, {None, Yellow}}}] Press Shift + Enter.
For Area of
enclosed by two curve i.e. Yellow area.
1.
Input
point=Solve[f[x]= =g[x]] Press Shift + Enter.
2.
Input {a, b, c,
d}=x/.point [Press Shift+ Enter]
3.
Use palettes and
go to basic math assistant and input the symbol
//N [Press Shift + Enter]
Q.No.15:
Binomial Probability Distribution Template.
Construction
Steps:
1.
Define the binomial parameters n, p, q for
example: n = 2; p = 0.5; q = 1 - p;
2.
Define
=
ProbabilityDistribution[Binomial[n, x] p^x q^(n - x), {x, 0, n, 1}] then,
Shift+ Enter
3.
Give the input PDF[
, x] Press Shift+ Enter
4.
Give the input Mean[
] for finding mean of the distribution
5.
Give the input Variance[
] for finding variance of the distribution
6.
Write a command TableForm[{Table[PDF[
, x], {x, 0, n, 1}]}, TableHeadings
→{{"f(x)"}, Table[x, {x, 0, n, 1}]}] to show distribution in table
form.
7.
Give
DiscretePlot[PDF[
, x], {x, -1, n + 1}, PlotStyle →Black,
FillingStyle→Directive[Opacity[1], Red],AxesOrigin → {-1, 0}, ExtentSize → 0.2,
AxesLabel → {"Value of X", "Probability f(x)"}] command for
ploting the graph of the probability distribution.
Q.No.16: Plot
the straight line
in Mathematica using Contour plot. Show Axis
and AxesLable. Take the range from - 2 to 2.
Construction
Steps:
1.
Use ContourPlot command for the Polting
the Straightline 2x+3y == 1.
Note:
Use = = instead of = for ContourPlot command.
2.
Give the range of x and y i.e. {x , -2, 2},
{y,-2, 2}.
3.
Use Axes
True to show Axes and AxesLabel
{"X","Y"} to give the
name of the Axes.
Example:
ContourPlot[2
x + 3 y == 1, {x, -2, 2}, {y, -2, 2},Axes
True, AxesLabel
{X
- Axis, Y - Axis}]
Q.No.17: Solve and Plot two linear equation x+ y=7
and x-y=1 in Mathematica using solve and contourplot command. Show Axis and
intersection point. Take the range from -6 to 6.
Construction
Steps:
1.
Give the input for solving Solve[ x + y ==
7 && x - y == 1, {x, y}].
2.
Use the show command to show the
CountourPlot {x + y == 7, x - y == 1}.
3.
Give the range of x and y i.e. {x, -6, 6},
{y, - 6, 6}.
4.
Use Axes
True
and AxesLabel
{"X","Y"} to show and name
for the Axes.
5.
Use AxesStyle
Directive[Orange, 12] for coluring and Width of the Axes.
6.
Use Graphics [{PointSize[0.03], Point[{4,
3}]}] for point size and intersection point.
Example:
Solve[
x + y == 7 && x - y == 1, {x, y}] press Shift + enter.
Show[ContourPlot[{x
+ y == 7, x - y == 1}, {x, -6, 6}, {y, -6, 6}, Axes
True,
AxesLabel
{X
- Axis, Y - Axis}, AxesStyle
Directive[Orange, 12]],
Graphics[{PointSize[0.03],
Point[{4, 3}]}]].
Q.No.18: Plot the hyperboloid
using
Contourplot3D. Take the range of plot from -2 to 2. ShowAxesLable and
PlotLabel.
Construction
Steps:
1.
Use the ContourPlot3D command for Plotting
hyperboloid
.
2.
[Note: This equation is related with three
variables so we use 3D Plot
3.
Use = = instead of = for ContourPlot.]
4.
Give the range of x, y and z. i.e, {x, -2,
2}, {y, -2, 2}, {z, -2, 2}.
5.
Give the command AxesLabel l
{x,y,z}
to Labled the Axes.
6.
Give the command PlotLabel l
x^2 + y ^ 2 - z^ 2 == 1 to name the graph.
Example:
ContourPlot3D[
, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
AxesLabel
l
{x, y, z}, PlotLabel l
].
Q.No.19: Plot a helix
using ParametricPlot3D. And Manipulate the parameter a from 1 to 5.
Construction
Steps:
1.
Since this function is determined by
parameter, u and having 3 co-ordinates show we use parametricPlot3D.
2.
Use Manipulate command for manipulating a.
3.
Use ParametricPlot3D for [{a Sin[u], a
Cos[u], u / 10}, {u, 0, 20}].
4.
Give the manipulation rang for a i. e {a, 1,
5}.
Example:
Manipulate[ParametricPlot3D[{a
Sin[u], a Cos[u], u / 10}, {u, 0, 20}], {a, 1, 5}]
Q.No.20: Surface plot
Construction
Steps:
1.
Use the command ParametricPlot3D[{u + v, u
- v, u^2 + v^2}].
2.
Give the range for u and v i. e {u,-3, 3},{v,-3,
3}.
3.
Use the PlotStyle
Yellow command for coloring the surface.
4.
Use the AxesLabel
{X, Y, Z} to name the Axes.
5.
Use the command ImageSize
Large for enlarging the surface.
Example:
ParametricPlot3D[{u
+ v, u - v, u^2 + v^2}, {u, -3, 3},{v, -3, 3}, BoxRatios
{1,
1, 1}, PlotStyle
Yellow, AxesLabel
{X
- Axis, Y - Axis, Z - Axis}, ImageSize
Large].
Q.No.21: Sphere plot
Construction
Steps:
1.
Use the ParametricPlot3D[{Sin[u] Cos[v],
Sin[u] Sin[v], Cos[u]}]
2.
Give the range for u and v i. e {u, 0, Pi},
{v,-Pi, Pi + 3 Pi / 4}.
3.
Use the PlotStyle
Opacity[0.5]
Example:
ParametricPlot3D[{Sin[u]
Cos[v], Sin[u] Sin[v], Cos[u]},{u, 0, Pi}, {v, -Pi, Pi + 3 Pi / 4}, PlotStyle
Opacity[0.5]].
Q.No.22:
Cylinder plot.
Construction
Steps:
1.
Use the ContourPlot3D[(x - 1)^2 + y^2 ==
1].
2.
Give the range for x, y and z i. e,
{x,-2,2},{y,-2, 2},{z,-2, 2}.
3.
Use AxesLabel
{X, Y, Z} for name the axes for naming for
the Axes.
4.
Use PlotRnge
Full for complet appear of cylinder inside
the axes.
Example:
ContourPlot3D[(x
- 1)^2 + y^2 == 1, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},BoxRatios
{1,
1, 1}, AxesLabel
{X
- Axis, Y - Axis, Z - Axis}, PlotRange
Full].
Q.No.23: Tangent Plane plot
Construction
Steps:
1.
Use Manipulate command to Manipulate to
Tangent Plane.
2.
Use ParametricPlot3D[{u + v, u - v, u^2 +
v^2}] under Show command.
3.
Give BoxRatios, PlotStyle, AxesLabel,
ImageSize as you’re interested.
For
example:
BoxRatios
{1, 1, 1},PlotStyle
Yellow, AxesLabel
{X
-Axis, Y-Axis, Z-Axis}, ImageSize
Large.
Use Graphics3D command
for decorating the tangent Plane.
Example:
Manipulate[Show[ParametricPlot3D[{u
+ v, u - v, u^2 + v^2},{u, -3, 3}, {v, -3, 3}, BoxRatios
{1, 1, 1}, PlotStyle
Yellow,AxesLabel
{X - Axis, Y - Axis, Z - Axis}, ImageSize
Large],Graphics3D[{Red, PointSize[0.02],
Point[{u + v, u - v, u^2 + v^2}]} /. {u
p, v
q}],Graphics3D[Arrow[{{u
+ v, u - v, u2 + v2}, {1 + u + v, 1 + u - v, 2 u + u2
+ v2}} /.{u
p, v
q}]], Graphics3D[Arrow[{{u + v, u - v, u2
+ v2}, {1 + u + v, -1 + u - v, u2 + 2 v + v2}}/.
{u
p, v ¦ q}]], ParametricPlot3D[({u + v, u - v, u^2 + v^2} +
a {1, 1, 2 u} + b {1, -1, 2 v}) /.{u
p, v
q}, {a, -2, 2}, {b, -2, 2}, PlotStyle
Blue]], {p, -3, 3}, {q, -3, 3}].
Q.No.24: Surface plot
Construction
Steps:
1.
Use ParametericPlot3D command for Ploting
{4 + (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u], 4 + Sin[v]} and {8 + (3 +
Cos[v]) Cos[u], 3 + Sin[v], 4 + (3 + Cos[v]) Sin[u]}.
2.
Give the range for u and v i. e, {u,0, 2
Pi},{v,0, 2 Pi}.
3.
Use PlotStyle
{Red,Green} to Show the different colure
of the given Surface.
Example:
ParametricPlot3D[{{4
+ (3 + Cos[v]) Sin[u], 4 + (3 + Cos[v]) Cos[u], 4 + Sin[v]}, {8 + (3 + Cos[v])
Cos[u], 3 + Sin[v], 4 + (3 + Cos[v]) Sin[u]}}, {u, 0, 2 Pi}, {v, 0, 2 Pi},
PlotStyle
{Red, Green}]
Q.No.25: Continuous Probability Distribution
Template
Construction
Steps:
1.
Give the input 'a' =1; b=4
Note:
Where 'a' means initial value of the distribution and 'b' means final value of
the distribution.
2.
Enter the function , f[x] = x^2 / 21
3.
Input
=
ProbabilityDistribution[x^2 / 21, {x, a, b}];
4.
Input PDF[
, x] then Shift+ Enter
5. Check
total probability by using input
Then, you will get 1 as a result.
1. Give
the input mean; Mean [
] // N for finding the mean of the
distribution.
2. Give
the input the Variance Variance[
] // N for finding the variance of the
distribution.
3. For
finding the Probability within the certain interval firstly Enter the range
e.g. c=2; d=4.5
4. Input
;
5. Give
the command Plot[ PDF{
, x}]
Q.No.26: Discrete Probability Distribution
Template.
Construction
Steps:
1. Give the input a=1; b=3
2. Note: Where 'a' means initial value of the
distribution and 'b' means final value of the distribution.
3. Give the input
=ProbablityDistributation[x^2/14,{x, a, b, 1}]
;
4. Input the PDF[
, x] then press Shift+ Enter.
5. Give the input Mean
for finding the mean of the distribution.
6. Give the
input Variance[
] // N for
finding the variance of the distribution.
Q.No.27: The Explicit representation of the space
curve.
Construction
Steps:
1.
Use Manipulate command to manipulate the
parametric curve
2.
Use Parametric Plot3D command for ploting
the graph [{t+1, t^3,t^2}] under the show command.
3.
Give the range of the parameter 't' i.e. {t,-2,2}
4.
Decorate the graph using the box ratio,
axis level, Graphics3D command.
Example:
Manipulate[Show[ParametricPlot3D[{t
+ 1, t^3, t^2}, {t, -2, 2}, BoxRatios →{1, 1, 1}, AxesLabel → {X - Axis, Y -
Axis, Z - Axis}], Graphics3D[{PointSize[0.03], Red, Point[{t + 1, t^3, t^2}]}
/. {t → parameter}]], {parameter, -2, 2}].
Q.No.28: The Implicit representation of the Viviani
curve.
Construction
Steps:
1.
Give input h=x^2 + y^2 + z^2 - 4 ; and g =
(x - 1)^2 + y^2 - 1;
2.
Use CounterPlot3D command to plot {h ==
0, g == 0}.
3.
Give the rang for x,y and z i.e. {x, -2,
2}, {y, -2, 2}, {z, -2, 2}
4.
Decorate the curve by using BoxRatio,
AxesLable and PlotRange command.
Example:
h
= x^2 + y^2 + z^2 - 4 ;
g
= (x - 1)^2 + y^2 - 1;
ContourPlot3D[{h==
0, g== 0}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},BoxRatios → {1, 1, 1}, AxesLabel
→{X - Axis, Y - Axis, Z - Axis}, PlotRange → Full]
Q.No.29: Unit vector along tangent to a space curve.
Construction
Steps:
1.
Inter the space curve r[t]= {t^3, t^3 + 7
t + 5 t^2, t^2} press Shift+ enter
2.
Inter r'[t] for finding the derivative of
the space curve.
3.
Then give the command tangentvector =
FullSimplify[r'[t], t ∈
Reals]
4.
Give magnitude = FullSimplify[Norm[r'[t]],
t ∈ Reals] for finding the
magnitude of the space curve.
5.
Give the command unittangentvector =
tangentvector / magnitude for finding unit tangent vector.
Q.No.30. Plot a Helix (a Sin[u], a Cos[u], u/10)
using ParametricPlot3D.And Manipulate the parameter a from 1 to 5.
Construction
Steps:
1.
Use manipulate command for manipulating
the helix.
2.
Use ParamatricPlot3D[{a u Sin[v],a u
Cos[v],u v}] command for plotting the helix
3.
Give the range for 'u' and 'v' i.e. {u, 0,
10}, {v, 0, 10}.
4.
Give the range of the manipulation for a.
i.e. {a, 1, 5}
Example:
Manipulate[ParametricPlot3D[{a
u Sin[v], a u Cos[v], u v}, {u, 0, 10}, {v, 0, 10}].
Q.No.31: Limit of the function.
Construction
Steps:
1.
Give the limit command for the function
Limit[(x^2 - 2 x - 8) / (x - 4)].
2.
Give the limit point for x. i.e. x→4
3.
Use Direction → -1 command: Limit[(x^2 - 2
x - 8) / (x - 4), x → 4, Direction →1]
Example:
Limit[(x^2
- 2 x - 8) / (x - 4), x → 4, Direction →-1]
Then,
Limit[x^a, x → ∞, Assumptions → a < 0]
Q.No.32: Limit of a function in Plot.
Construction
Steps:
1.
Use the Manipulate command for
manipulation of the given function.
2.
Use Plot Plot[{a x Sin[1 / (b x)], Abs[a
x], - Abs[a x]}] command
3.
Give the range for x. i.e. {x, -1, 1}
4.
Use PlotRange{-5, 5}
5.
Give the range of manipulation{{a, 1,
"Amplitude"}, 1, 5}, {{b, 1, "Periodicity"}, 1, 5}
Example:
Manipulate[Plot[{a x
Sin[1 / (b x)], Abs[a x], - Abs[a x]}, {x, -1, 1},PlotRange → {-5, 5}], {{a, 1,
"Amplitude"}, 1, 5}, {{b, 1, "Periodicity"}, 1, 5}]
Q.No.33: Test of Left Hand and Right hand limit.
Construction
Steps:
1.
Give command limit = Limit[Abs[x] / x, x →
0]
2.
Give the command limitright = Limit[Abs[x] /
x, x → 0, Direction → -1] for finding right hand limit
3.
Similarly, limitleft = Limit[Abs[x] / x, x
→ 0, Direction →1] for finding left hand limit.
4.
Use the limit == limitright == limitleft
command whether the limit is exist or not.
Q.No.34: Derivative of function by first principle.
Construction
Steps:
1.
Input the function f[x_] := Tan[x]
2.
Give the command; Limit[(f[x + h] - f[x])
/ h, h → 0, Analytic → True] press Shift+ Enter
3.
Example: f[x_] := Tan[x]
4.
Limit[(f[x + h] - f[x]) / h, h →0,
Analytic → True]
Q.No.35: Application of Integration.
Construction
Steps:
1.
Give the Manipulate command for
manipulation of h
2.
Use [ContourPlot[{x^2 + y^2== 16, y==h}]
under manipulation.
3.
Give the range of x and y respectively
i.e.{x, -4.1, 4.1}, {y, 0, 4.1}
4.
Use AspectRatio→Automatic command
5.
Give the range of manipulation i.e. {h, 0,
4}
Example: Manipulate[ContourPlot[{x^2 + y^2==16, y==h},
{x,
-4.1, 4.1}, {y, 0, 4.1}, AspectRatio → Automatic], {h, 0, 4}]
6.
Use the following input
Input[1];
Solve[x^2 + y^2== 16, y]
f[x_]
:=
; 2
* Integrate[f[x], {x, 0, h}, Assumptions →0 < h < 4]
A[h_]
:= 2 [1/2h √(16-h^2) + 8 ArcSin[h/4]
A[4]
Plot[A[h],
{h, 0, 4}]
FindRoot[A[h]
== 2 Pi, {h, 1}]
Q.No.36: Formula Expansion.
Construction
Steps:
1.
Use manipulation command
2.
Give the command Expand[(a + b)^n]
3.
Give the range of manipulating {{n, 1,
"Power of (a+ b)"}, 1, 10, 1}
Example:
Manipulate[Expand[(a +
b)^n], {{n, 1, "Power of (a+b)"}, 1, 10, 1}]
Input[1];
Solve[x^2 + y^2== 16, y]
f[x_]
:=
; 2
* Integrate[f[x], {x, 0, h}, Assumptions →0 < h < 4]
A[h_]
:= 2 [1/2h √(16-h^2) + 8 ArcSin[h/4]
A[4]
Plot[A[h],
{h, 0, 4}]
FindRoot[A[h]
== 2 Pi, {h, 1}]
Q.No.36: Formula Expansion.
Construction
Steps:
1.
Use manipulation command
2.
Give the command Expand[(a + b)^n]
3.
Give the range of manipulating {{n, 1,
"Power of (a+ b)"}, 1, 10, 1}
Example:
Manipulate[Expand[(a +
b)^n], {{n, 1, "Power of (a+b)"}, 1, 10, 1}]
1
0 Comments
Please, Do not enter any spam link in the comment box.
Thanks for the Message!