Algebra Formulas-The Infinity Mathematics

Algebra Formulas

 


1.       Set identities

Definitions:

I: Universal set A’: Complement Empty set: Æ

Union of sets

A È B = {x | x ΠA or x ΠB}

Intersection of sets


Identity

A È Æ = A A Ç I = A

Set identities involving union, intersection and complement

complement of intersection and union

A È A¢ = I A Ç A¢ = Æ

De Morgan’s laws


A Ç B = {x | x ΠA and

Complement

A¢ = {x ΠI | x ΠA}

Difference of sets


x ΠB}


( A È B)¢ = A¢ Ç B¢

( A Ç B)¢ = A¢ È B¢

Set identities involving difference

B \ A = B ( A È B)


B \ A = {x | x ΠB and x Ï A}

Cartesian product


B \ A = B Ç A¢

A \ A = Æ

( A \ B ) Ç C = ( A Ç C ) \ ( B Ç C )


A ´ B = {( x, y )| x Î A and  y Î B}

Set identities involving union

Commutativity

A È B = B È A

Associativity

A È ( B È C ) = ( A È B ) È C

Idempotency

A È A = A

Set identities involving intersection

commutativity

A Ç B = B Ç A

Associativity

A Ç ( B Ç C ) = ( A Ç B ) Ç C

Idempotency

A Ç A = A

Set identities involving union and intersection

Distributivity

A È ( B Ç C ) = ( A È B ) Ç ( A È C ) A Ç ( B È C ) = ( A Ç B ) È ( A Ç C ) Domination

A Ç Æ = Æ

A È I = I


A¢ = I \ A

 

2.       Sets of Numbers

Definitions:

N: Natural numbers No: Whole numbers Z: Integers

Z+: Positive integers Z-: Negative integers Q: Rational numbers C: Complex numbers

Natural numbers (counting numbers )

N = {1, 2, 3,... }

Whole numbers ( counting numbers + zero )

No = {0, 1, 2, 3,... }

Integers

Z + = N = {1,  2,  3,... }

Z - = {..., - 3, - 2, -1}

Z = Z- È{0} È Z = .{.., - 3, - 2, -1, 0, 1, 2, 3,... }


Irrational numbers:

Nonerepeating and nonterminating integers

Real numbers:

Union of rational and irrational numbers

Complex numbers:

C = {x + iy | x ΠR and y ΠR}

N Ì Z Ì Q Ì R Ì C


3.       Complex numbers

Definitions:

A complex number is written as a + bi where a and b are real numbers an i, called the imaginary unit, has the property that i2=-1.

The complex numbers a+bi and a-bi are called complex conjugate of each other.

Equality of complex numbers

a + bi = c + di if and only if a = c and b = d

Addition of complex numbers

(a + bi) + (c + di) = (a + c) + (b + d)i

Subtraction of complex numbers

(a + bi) - (c + di) = (a - c) + (b - d)i

Multiplication of complex numbers

(a + bi)(c + di) = (ac - bd) + (ad + bc)i

Division of complex numbers

a + bi = a + bi × c - di = ac + bd + æ bc - ad ö i

                                                    c + di     c + di   c - di     c2 + d 2        (c+ )

Polar form of complex numbers

x +iy = r (cosq +isinqr -modulus, q -amplitude


Multiplication and division in polar form

éër1 (cosq1 + i sinq1 )ùû × éër2 (cosq2 + i sinq2 )ùû =

= r1r2 éëcos (q1 + q2 ) + i sin (q1 + q2 )ùû



De Moivre’s theorem

éër (cosq + sinq )ùûn   = rn (cos nq + sin nq )


4. Algebric equations

Quadric Eqation: ax2 + bx + c = 0

Solution (roots):




if D=b2-4ac is the discriminant, then the roots are

(i)  real and unique if D > 0

    (ii)  real and equal if D = 0

    (iii)   complex conjugate if D < 0

5.       Factoring and product

Factoring Formulas

a2 - b2 = (a - b)(a + b)

a3 - b3 = (a - b)(a2 + ab + b2 )

a3 + b3 = (a + b)(a2 - ab + b2 )

a4 - b4 = (a - b)(a + b)(a2 + b2 )

a5  - b5  = (a - b)(a4  + a3b + a2b2  + ab3 + b4 )

Product Formulas

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a - b)3 = a3 - 3a2b + 3ab2 - b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a - b)4 = a4 - 4a3b + 6a2b2 - 4ab3 + b4

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

(a + b + c +...)2 = a2 + b2 + c2 +...2(ab + ac + bc +...)




Post a Comment

1 Comments

Please, Do not enter any spam link in the comment box.
Thanks for the Message!