Algebra Formulas
1. Set
identities
Definitions:
I: Universal set
A’: Complement Empty set: Æ
Union of sets
A È B = {x | x Î A or x Î B}
Intersection of sets
Identity
A È Æ = A A Ç I = A
Set identities involving union, intersection and complement
complement of intersection and
union
A È A¢ = I A Ç A¢ = Æ
De Morgan’s laws
A Ç B = {x | x Î A and
Complement
A¢ = {x Î I | x Î A}
Difference of
sets
x Î B}
( A È B)¢ = A¢ Ç B¢
( A Ç B)¢ = A¢ È B¢
Set identities
involving difference
B \ A = B ( A È B)
B \ A = {x | x Î B and x Ï A}
Cartesian
product
B \ A = B Ç A¢
A \ A = Æ
( A \ B ) Ç C = ( A Ç C ) \ ( B Ç C )
A ´ B = {( x, y )| x Î A and
y Î B}
Set identities
involving union
Commutativity
A È B = B È A
Associativity
A È ( B È C ) = ( A È B ) È C
Idempotency
A È A = A
Set identities
involving intersection
commutativity
A Ç B = B Ç A
Associativity
A Ç ( B Ç C ) = ( A Ç B ) Ç C
Idempotency
A Ç A = A
Set identities involving union and intersection
Distributivity
A È ( B Ç C ) = ( A È B ) Ç ( A È C ) A Ç ( B È C ) = ( A Ç B ) È ( A Ç C ) Domination
A Ç Æ = Æ
A È I = I
A¢ = I \ A
2. Sets of Numbers
Definitions:
N: Natural numbers No:
Whole numbers Z: Integers
Z+:
Positive integers Z-: Negative integers Q: Rational numbers C:
Complex numbers
Natural numbers
(counting numbers )
N = {1, 2, 3,... }
Whole numbers (
counting numbers + zero )
No = {0, 1, 2, 3,... }
Integers
Z + = N = {1, 2, 3,... }
Z - = {..., - 3, - 2, -1}
Z = Z- È{0} È Z = .{.., - 3, - 2, -1, 0, 1, 2, 3,... }
Irrational numbers:
Nonerepeating
and nonterminating integers
Real numbers:
Union of rational and irrational
numbers
Complex numbers:
C = {x + iy |
x Î R and y Î R}
N Ì Z Ì Q Ì R Ì C
3. Complex numbers
Definitions:
A complex number is written as a + bi where a and b are real numbers an i,
called the imaginary unit, has the property that i2=-1.
The complex numbers
a+bi and a-bi are called
complex conjugate of each other.
Equality of
complex numbers
a + bi = c + di if and only if a
= c and b = d
Addition of
complex numbers
(a + bi) + (c + di) = (a + c) +
(b + d)i
Subtraction of complex
numbers
(a + bi) - (c + di) = (a - c) +
(b - d)i
Multiplication
of complex numbers
(a + bi)(c + di) = (ac - bd) +
(ad + bc)i
Division of
complex numbers
a + bi = a + bi × c - di = ac + bd + æ bc - ad ö i
c + di c + di c - di c2 + d 2 (c2 + d 2 )
Polar form of complex numbers
x +iy = r (cosq +isinq) r -modulus, q -amplitude
Multiplication and
division in polar form
éër1 (cosq1 + i sinq1 )ùû × éër2 (cosq2 + i sinq2 )ùû =
= r1r2 éëcos (q1 + q2 ) + i sin (q1 + q2 )ùû
De Moivre’s
theorem
éër (cosq + sinq )ùûn = rn (cos nq + sin nq )
4. Algebric equations
Quadric Eqation: ax2 + bx + c = 0
Solution (roots):
if D=b2-4ac is the discriminant, then the roots are
(i) real and unique if D > 0
(ii) real and equal if D
= 0
(iii) complex conjugate
if D < 0
5. Factoring and product
Factoring Formulas
a2 - b2
= (a - b)(a + b)
a3 - b3 = (a - b)(a2 + ab + b2 )
a3 + b3 = (a + b)(a2 - ab + b2 )
a4
- b4
= (a - b)(a + b)(a2
+ b2
)
a5 - b5 = (a - b)(a4 + a3b + a2b2 + ab3 + b4 )
Product
Formulas
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3
(a + b)4
= a4
+ 4a3b + 6a2b2 + 4ab3
+ b4
(a - b)4
= a4
- 4a3b + 6a2b2 - 4ab3
+ b4
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
(a + b + c +...)2 = a2 + b2
+ c2 +...2(ab + ac + bc +...)
1 Comments
god job
ReplyDeletePlease, Do not enter any spam link in the comment box.
Thanks for the Message!